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Introduction & Problem

Titan, Saturn’s largest
satellite, has a complex
atmosphere and surface,
making it a key area for
planetary research.

Data & Method
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Studying Titan’s surface
requires specific tools

VIMS processed with Radiative
Transfer code
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opacity characteristics
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important for: $ 41 . A e All inferences of surface
—— properties need to first account
for the atmospheric contribution
to the data.
We evaluate whether surface
features change appearance
with time accounting for
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<~ modelling the interior-surface-
atmospheric interactions
< finding the CH, source
< climate evolution
< Unveiling surface compositions
<> constraining habitability
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<- atmosphere
<> surface albedo
<> Changes indicate active
processes (possibly
endogenic)

Geologically active areas
could be utilized as future
mission landing sites
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We use tools with updated parameters that have never been used before for the
investigation of Titan’s surface.
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RESULTS IMPORTANCE

Blandlands NO CHANGE
Hotei Regio NO CHANGE
Tui Regio 50% DARKER

Sotra Patera 2x BRIGHTER

-energy
-methane reservoir
-interior/surface/atmosphere exchanges
-support for life

National Aeronautics and Space Administration
Papers from this work while at JPL.:

Jet Propulsion Laboratory This research was supported by an appointment to the 1. Solomonidou et al. (2014). Surface albedo spectral properties of geologically interesting areas on Titan. JGR, 119, 1729-1747.
2. Sohl, Solomonidou et al. (2014). Structural and tidal models of Titan and inferences on cryovolcanism. JGR, 119, 1013-1036.

California Institute of Technology ,
Pasadena, California NASA Postdoctoral Program at the Jet PropuIS|on 3. Solomonidou et al. (2015). Temporal variations of Titan’s surface with Cassini/VIMS. Published at Icarus, available online.
) boratory administered by Oak = ge Associated 4. Lopes, Solomonidou et al. (2015). Nature, Distribution, and Origin of Titan’s Undifferentiated Plains. Sibmitted at Icarus.

4. Sotin, Solomonidou et al. (2015). In preparation.

s Universities through a contract with NASA. Poster No. P-2
Copyright 2014. All rights reserved. —m—m-—+-—+—rv-r-r--+—--————"—"—"""%" "4 -



National Aeronautics and
Space Administration

Development of a Chiral Amino Acid Separation by Microchip Electrophoresis

for Analysis of Extraterrestrial Samples

Principal Investigator: Jessica S. Creamer (389K)
Maria F. Mora (389K) and Peter A. Willis (389K)

Objective

To develop a method for measuring the chiral distribution of at least
twenty different amino acids in a soil, water, or ice sample with limits of
detection at 1 part per billion (ppb) or lower.

J

Background

« The search for life in our Solar System is one of the highest priorities at NASA
« Amino acids are one of the building blocks of life that can be used as specific

biomarkers
« Determining the chirality of amino acids can determine the biotic or abiotic

origin of the sample

“The Lego Principle”
Abiotic processes generally produce samples containing smooth distributions
of molecular properties
* Biotic processes only use specific subsets of these distributions
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Molecular Property (amino acid chirality)

« Utilizing gas chromatography can have significant challenges getting small
polar molecules into the gas phase

“... the influence of the mineral matrix and chemical composition on organic-compound derivatization,
especially the presence of hydrated minerals and oxides in Martian samples, will likely be a major
constraint in the ability for SAM to detect amino acids and carboxylic acids ...” (Stalport et al.)

 New instruments capable of preforming aqueous analysis of samples in situ
are needed
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Methods

Microchip electrophoresis (ME) with laser induced fluorescence

detection (LIF) allows analysis of polar organics without ever leaving

the aqueous phase

1) Amino acids are labeled with fluorescent tag for high-sensitivity LIF detection

2) Labeled sample is delivered to separation channel

3) Analytes separated by ME based on their mobility (u) which is proportional to
their mass-to-charge ratio
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Results

Previous work by Lu et al. determined a cooperative effect between
chiral selectors [3-cyclodextrin and sodium taurocholate

B3-Cyclodextrin Sodium taurocholate
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Further optimization
To influence the interaction between the amino acids and the CS the temperature
and the polarity of the BGE were optimized to resolve five pairs of enantiomers
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4500000 Added 10% v/v ACN { A \
to resolve Leu, Ser, L-Leu LS
4000000 and Ala enantiomers e LAla 2790
D-Leu D- AIaD Ser
15°C, 10% ACN
3500000 PNt s aln — -
2 pairs
000000 o D-Ser/Ala | Pe |
e l L-Ser/Ala L-Asp L-Glu
2500000 -
5 D-Leu D-7I\U D_Asp
o n “ N \ 15°C
“ 2000000 N Nt
L/D-Ser D dt t f
1500000 L/D-Ala D-Asp/L-Glu ecreased temperature o
the separation to resolve
1000000 Glu and Asp enantiomers
500000
0 25°C
o) 500 1000 1500 2000
Time (s)
Sample: 0.6-1.2 uM FITC labeled amino acids
BGE: 80 mM borate pH 9.3, 20mM B-CD, 30mM STC
NG
( | |
Conclusions

500

» Using two separation conditions it is
possible to resolve 5 pairs of enantiomers

on a 20 cm separation channel
1) Lowered the temperature to resolve Glu and Asp
2) Added acetonitrile to resolve Leu, Ala, and Ser

Fluorescence
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* This separation improves upon previous
work in which Ala and Ser enantiomers
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were co-migrated

N\

Future directions
* |ncrease amount of enantiomers separated

* Transfer the method to the Chemical Laptop,
an instrument developed in the Willis group
that houses the electronics and optics needed
to perform sample handling and analysis by ME-LIF

g
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Metastable Oxygen Production by Electron Impact

Jeffrey D. Hein (3227-Caltech)
Charles P. Malone (3227), Paul V. Johnson (3227), Isik Kanik (3227)

Summary
We study metastable O(1S) and O(1D) fragments produced by
electron-impact excitation of oxygen-containing gas targets:

Dissociative Excitation:
e (E)+N,O— e (E—AE)+ N,+0O('S)
Direct Excitation:
e~ (E) + O(BP) — e~ (E — AE) + O('S)
Fundamental measurements of cross sections and collision dynamics
o Challenge to experimentally measure (low internal energy, long life)

Photomultiplier
MCS TOF Spectra

Kr
Rare Gas

Bandpass
Filter

/ Faraday Cup

o Accurate determination is required for the reliable interpretation and Light
modeling of natural phenomena and mission data i b Pipe
« Atmospheric interactions/dynamics with electrons e
: Metas_table spe_(:le_s act as energy reservqlr .. Aurora Austa/s oered frbm STS-39. Kr-O*
* Observation of emissions serve to characterize composition 14 Shutter Fluorescence
[McKay 2015; Raghuram 2013; Zhang 2005] E—
Target
Measurement cas  Jo— - pmne
Metastable oxygen particle detection using Rare Gas Con ver_sion Tgchniq_ue : 1 1 Ee—
« Pulsed electron beam produces metastable O fragments at interaction region MetastableSpecies OCS) | ©CD) E pefiectors Cooled Cu Surface
« Metastables drift and impinge on rare gas ice formed on a cooled (~ 5 K) surface Internal Energy (eV) 4.19 | 1.96 A RN AL
 RG-O" exciplexes form and rapidly (— 1 us) de-excite, producing photons Lifetime (s) 0.8 | 116 Aperture
« Wavelength filtering isolates desired metastable species Suitable Detector Kr | Ne ] [ e (G Vacuum Chamber Y,
« Time-resolved photomultiplier signal: cross section and dissociation dynamics e S e i

 Prompt signal: photons from interaction region during electron pulse .

* Metastable signal: exciplex emission Figure 1: Overview of experiment for measuring metastable oxygen produced by
Rare Gas Conversion: electron impact. Photons detected by exciplex emission serves as an Indirect
0(1S) + Kr(1S) — Kr—0" — OGP) + Kr(1S) + hv observation of metastable production

Results metastable / exciplex detected by PMT
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Flgure 2 Fluorescence SpeCtra for krypton Ice Flgure 3 Tlme-Of-ﬂlght (TOF) and Kkinetic energy F|gure 4 Threshold excitation function Spectra for
and neon ice, with identified exciplex emissions, released (KER) spectra for O('S) production from N,O, for 0,. Prompt signal from O,*(b 4%; — a 411, ) with
measlured husmlg a 6 n|{|n FWHM monochror?fator fo(; 20,_40|, a(rj\_d 4OQ e_V elerc]:tron I|mpa_c:tbe|nefrgy. l;ERl Indicates a 18.62 eV threshold [LeClair 1993]. This calibrates
Wa\lleder}gt Te gctlonl.a 3on spfglctrum IS oh set an a single |ssoi,‘_|at|9n channe_, sFu_lta e for absolute cross the impact energy scale, and gives O(1S)
§ca}e r(])r ca_rltly. an .pass]c L ters are chosen to section normalization shown in Figure 5. metastable signal threshold of 14.07 + 0.13 eV,
Isolate the exciplex emission of interest. consistent with [LeClair 1993].
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. N,O h i e
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. IH £ Future Work
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E - IH - [=INN I il The absolute electron-impact dissociative excitation
LL] ¥ x g7 cross section for O(1S) production from N,O (shown
% EEI‘ S %ﬁ iIn Figure 6) serves as a calibration standard for all
c [ P i g 1.0 t + ! i atmospherically-relevant species currently under
%) ) . 3 2 . PEET . investigation, including O,, CO,, CO, H,0, and atomic

_ . i O o5k i O targets.

" t The capability of preparing a neon ice matrix was
. } recently achieved through the Installation of a
LY e B X RV OO b D b ColdEdge 101E cryostat capable of achieving a steady
mpact Energy (eV) Electron Impact Energy (eV) 5 K surface ’gempera_ture. The | detection of
i " > : FiIgure 6  Absolute excitation function for O(LS) OCD) fragments is possible (see Figure 2), and
Figure S5 Bethe-Born plot of O(!S) production gd ot . o fit i B measurements are currently underway.
from N,O. Signal goes as In E/E for high E, and the pro uctl_on rom N,O using Bethe fit In Figure 5. Impact
absolute cross section o(E) is determined by: energy Is calibrated using threshold measurements of O,
as described in Figure 4. Measured results show very Ref
4tay’R?*f 4CE good agreement with previous results from [LeClair € erences
o(E) = In| — 1992] LeClair L R, Corr J J, and McConkey J W, (1992) J. Phys. B, 25, L647.
Eqn E R ' LeClair L R and McConkey J W, (1993) Chem. J. Phys., 99, 4566.
McKay A J et. al, (2015) /carus, 250, 504.
National Aeronautics and Space Administration Raghuram S and Bhardwaj A, (2013) /carus, 233, 91.
Jet Propulsion Laboratory Zhang S P and Shepherd G G, (2005) J. GeoPhys. Res., 110, A03304.
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Kinetics of Methane Clathrate Formation and Substitution
with Ethane — Implications for Outgassing on Titan

Principal Investigator: Tuan H. Vu (3227)
Co-Investigator: Mathieu Choukroun (3227)

x Titan’s atmospheric methane is constantly depleted through 0 A type of solid inclusion compounds 103 prerrrrr e PSS g
! 3 : AR 5 ydrate + Liqui A
complex photochemical reactions. Replenishment process@sontaining small 102 { ozl 4 ' ‘
. . . g i Hydrate + Ice N g SN

must take place to explain present- hydrocarbons trapped inside symmetric o 7 : &N

day abundance. cages of 100
s water 1ce, also known as “burning ice.” — 10 .
¢ Total amount of liquid hydrocarbons detected on surface lakes 8 A
. A, . o
alone cannot account for replenishment. Impacts and/or e Conditions for formation and 2 . s # Hzs XMars
» 10 A
cryovolcanism (consistent with structures of the cages depend £ ol V .
. b | v as +Ice
release of “°Ar) are required. largely on the size of the guests. .
L | A
; ' €02 Gas +

. Titan’s interior crust 1s believed to contain stable layers of 0% 1 H20 Vapor

methane clathrates that may serve as W
. . 10-8 i
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y Temperature (K)
e CHs < CH, / Complexorganics >S adll iAo “oo 7 & = €S X
N / Nz -~ @ condensation Choukroun et al. The Science of Solar System Ices; Springer, 2013, pp. 409
M} ald 1 o ﬁL:@f?:e-%f”f@”»“Of
" precipitation aerosol settling \‘ / / mgssghem o ,”",’III,’II’,’I/,‘/,";irecipitation

i\ liquid sation / - accumulation
i iquid percolation _
i \ A\ R \ gas diffusion / / v/pc—:»rcolatuon

l \ / Impacts /

!ﬂ\\, A cryovoleanism I .ﬁ;@%ﬁ ?——SUDStitUlion(*/;;%?;J i . i
N Kinetics of Formation
Raulin et al. Chem. Soc. Rev. 2012, 41, 5380 Choukroun, Sotin. GRL 2012, 39, L04201

* Pressurization of small 1ce deposits inside the
capillary tube with 30-40 bar of CH, at 223-253 K
results in clathrate formation within minutes.

A Pch, = 30 bar

Experimental Setup

e C(Clathrate growth proceeds faster at warmer

Clathrate/Ice Peak Area Ratio

* A high-pressure apparatus . e - b temperatures and higher pressures. Growth 1s
(up to 200 bars) is developed 04 el monitored by the ratio of peak areas between the
\ for studying clathate kinetics. = 30- clathrate peak and ice peak at ~3120 cm™.
* Methane clathrate samples U x10” (K » Arrhenius plot (inset) yields an activation energy of
are synthesized in situ at A 12.3 kJ/mol for methane clathrate formation at 40
223-253 K and 30-40 bars Time (min) bar and 13.9 kJ/mol at 30 bar.
in a temperature-controlled
Linkam CAP 500 cryostage.
. 4 e Kinetics of formation are Ethane SUbStltUtlon
monitored via changes in the 2200 e supsnsed tavte P <9500 .. in
T microscopic 1mages and 1n — arsic clathrate ﬂ * Following clathrate formation, excess methane gas
i the Raman spectral features 2000 EAT T ” is removed from the system and methane clathrates
Photograph of the Linkam CAP 500 high-pressure a5 a function of time until are exposed to 30 bar of ethane at 273 K for 1 hr.
cryostage. The capillary has a square cross-section and NARE R : 1800 - C,H, gas
is guided to the optical area (#9) after locking (#7). equlhbrlum 1s reached. %*
Ll « Raman signatures point to the presence of a mixed
= methane-ethane clathrate after gas exchange.
1400 —

e A dissociation temperature of 287.8 K 1s found for
the substituted product, indicating a composition of

1200 —

/ Micro-Raman Observation

1 VLR T T T P R L YT N7 L PO 8 P P TR I T [ A P S,
Methane Clathrate FOI‘mathn at 40 Bar 2700 2750 2800 2850 1290() 2950 3000 16% methane mole fraCtiOIl.
Raman shift (cm )
Raman spectra (left) show evolution of
the 2903 cm! peak, characteristic of the
CH, gas v, symmetric stretch of enclathrated
e SR batr C|144 +ice at 233 K CH,, over time. Note the morphological
% :t:%m'ni change in the ice textures in the n
G 7 := ?gEi: corresponding microscope images. C o n CI u S I O n
ey min
1200 — 3 J . A .
« High-pressure experiments have been conducted to measure the kinetics of clathrate formation and guest
LS exchange, bringing forth new information on the timescales that would be required for these processes to
5 800+ occur at Titan’s conditions.
=
i 1 min 36 min RN s : ; : :
R Aol e Preliminary results suggest that, for small particle size with high surface areas, both formation and
] 4 o ) . o
clathrate \ substitution processes take place on a rather fast timescale (on the order of minutes).
i o ‘ ‘ ' « Subsequent work will examine formation and exchange kinetics at other pressures and temperatures to
2890 2900 2910 \ 5 3 A ) . . .
SR 85 min 106 min \determlne activation energies, thereby providing constraints for current geophysical/outgassing models./
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IRTF-TEXES observations of

Jupiter’s polar aurorae
James Sinclair!

P-7

,Glenn Orton!, Thomas Greathouse?, _Le|gh Fletcher34, Pat Irwin3

3222, Jet Pr 14 Y,

Jupiter’s aurorae in the Infrared
 Air glow seen at shorter wavelengths (Figure 1a) is produced
when energetic solar wind particles bombard atmospheric gases.

* The atmosphere also acts a resistor to these particles producing
Joule heating, which yields auroral hotspots observed in the
thermal infrared (Figure 1b).

« Influx of charged particles also modifies stratospheric chemistry.
(b) Infrared

(a) Ultraviolet

Figure 1: (a) UV image of Jupiter’s auroral emission (http://juno.wisc.edu/Images/
using/Science/Objectives/Jupiter_Aurora.jpg), (b) Jupiter at 7.8-um (stratospheric
CHj4 emission) from Subaru-COMICS.

Ground-based support of Juno mission
« Juno spacecraft ngat Jupiter in July 2016. =%

By
* Auroral emis imtéép atmosphere to be studled uﬁm0 uv,
Near-Infrared; Microewave and Ra i

«BUT, Juno ha§
capable of de

nal infrared’instrument (

temperature and comp

*Need ground-based thermal infrared observations to complement/
set context for Juno observations in other wavelength ranges.

The TEXES spectrograph on NASA’s IRTF
* The Texas Echelon Cross Echelle Spectrograph on NASA’s
Infrared Telescope Facility (3 m telescope at Mauna Kea, HI).
* Measures spectra from 5- to 25-um at a very high spectral
resolving power (v/Av = 85000).
* High spectral resolution sounds Jovian atmosphere over much

larger altitude range (10 to 0.001 mbar) compared to Cassini-
CIRS (Figure 2). oo Cassini-CIRS (Av = 2.5 cm™)
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Cassini-CIRS

(top) and IRTF-

TEXES 1000
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050
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IRTF-TEXES observations during solar maximum
» Observations acquired on Dec 11th 2014 close to solar maximum
as test of future TEXES observations during Juno mission.

* Spectra measured of H> S(1), CH4, C2Hz, CoHs, and C2Ha
emission at Jupiter’s high latitudes.

» Brightness temperature maps show northern auroral hotspot
centred on 62°N (planetographic) and 180°W (System III

587.0 cm - 5 mbar temperatures. 12452 cm': 1 - 0,001 mbar temperatures

Longitude. i T
T

ool T

Figure 3: J 50
Brightness
temperature
maps of Ha
S(1) (587.0
cm') and CHy
(12452 cm™) ) v ‘
emission.
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0 e @ i a0 a0 a0 o
Systom il o
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Retrieval analysis
« Vertical temperature profile at 62°N, 100°W (quiescent) and
180°W (on-aurora) retrieved using NEMESIS (a radiative
transfer retrieval code).

« Using Ha S(1) and CH4 emission as temperature metrics.

Initial guess of
temperature

profile
Modify
Observed temperature
spectrum Compare synthetic
and observed

Results/Conclusions

» Aurora has little effect on

temperatures at pressures
higher than 0.1 mbar.

H, (1) emission

62N, 0w ]

- Largest retrieved temperature  ~ «
difference of 18.9 + 2.8 K at
6-pbar between 100°W and
180°W.

——p Auroral heating
strongest at 6-ubar? e

I

CH, emission

62N, 180W + 20
62N, 100W

Racsance (W e’ st om)

Figure 4: Observed (points,error bars)
and modelled (solid) spectra at 62°N,

100°W (blue), 180°W (red) and H
corresponding retrieved temperature ol
profiles. T

Initl Guess

62N, 100w

Next steps
« Perform subsequent retrievals of C2Hz, C2Has and C2He to quantify
auroral effects on composition.

« Correlate with Hz" auroral emission at 3-pm.

* Perform similar observations/analysis during Juno mission.

» Use Gemini North (8 m telescope) for higher spatial resolution.
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Energetic Processing of Astrophysical Ice Analogs, Investigated via

Two-Step Laser Ablation and Ionization Mass Spectrometry

Bryana L. Henderson (3227)
Murthy S. Gudipati (3227)

Email: Bryana.L.Henderson@jpl.nasa.gov

Motivation: COMETS EUROPA ENCELADUS KUIPER BELT OBJECTS INTERSTELLAR
Astrophysical Ices Exposed to Radiation Gk’ A Y 7 MERIUM ek

Can complex chemistry occur at 100 K? At 5 K? Y SR L “* <
Which reactive intermediates are important? How might these /s | L W WS 2005 FYe
reactions affect the emergence or survival of life? L A |
Method: (1) Recreate these processes in the lab. | =
(2) Detect reaction products and intermediates - < 2003 EL61 Quaoar

with a novel mass spectrometry technique 100 K T — e it -
that allows for low-temperature analysis. oK

Charon
. o. .~. * . 4

Compare With Observational Data
1. Prepare lce Analogs and Expose to Space-Like Radiation

Most of our detected species have been observed in space, but several
have not yet been identified in comets. Our findings will help to guide

Comets and  the - 508 v Bockeloe M w |Electron Gun: 1x1013 cm-2s-! [RENAR I HEE Gl R R future astronomi(?al observation_s and invegtigat_ions of viable low-
interstellar medium W e 5 e e i . temperature reaction pathways_, in astrop_hysu:al ices such as comets,
(ISM)  have similar ¥ «08 29 D & KBOs, and other planetary and interstellar ices.

1 O outa TOZZ B D oy 1
compositions. During a N I SSBESoz. .| SMES., g
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Electron irradiation and thermal driven chemistry on H,S-CH;OH-
NH;-H,0O and CH;OH-NH;-H,O ices: application to Jupiter Trojans

Principal Investigator: Ahmed MAHIJOUB (3227)

M. Poston (Caltech), K. Hand (4000), M. Brown (Caltech), J. Blacksberg (389K), J. Eiler (Caltech),
R. Hodyss (3227), R. Carlson (3227), B. Ehlmann (3220-Caltech), M. Choukroun (3227)

ﬂ)verview: Jupiter Trojan asteroids display two distinct populations that contrast in color: “Less-Red Trojans” and “Red Trojans”. Why &

Trojans.

objects belonging to the same group present this bimodal spectral distribution? This question 1s linked to the history and evolution of these
objects and the solar system as predicted by dynamical models such as the ‘’Nice” model where the Jupiter Trojans are predicted to have
formed 1n the Kuiper belt region and subsequently moved into their present orbits as result of a large scale solar system disruption. In one
hypothesis, this red color reflects the formation of organic crust due to hundreds of millions years of space weathering. The color of this
organic crust 1s believed to depends on the 1nitial chemical composition of the icy surfaces of these objects. We investigate here the difference
between objects formed outside and inside the stability line of H,S in terms of color and chemical composition. The main outcome of this
laboratory work 1s a prediction of detectable molecules and signatures that could serve as target molecules for future mission to Jupiter/

/Colors and size distribution of Jupiter Trojans:

Cumulative color-magnitude distribution \
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1- Two distinct populations with different Vis-NIR spectra 2- The two sub-populations differ strongly in their size distributions,
(Emery et al. 2011) they may come from distinct source populations (Wong et al. 2014).
HypOtheSlS: Less-Red Trojans
/HZS remains, Very Red KBO Jupiter ®
Stability line of H25 ® _ H2S evaporates, Red KBO |
. Red Trojans
Large Scale reorganization
KBOs scattered and captured in Jupiter Trojans position
Irradiation of icy surfaces of KBO with H2S ——— Very Red KBO
Irradiation of icy surfaces of KBO without H2S ———— Red KBO Irradiation and heating of Very red and red KBOs —— Red and Less-Red Trojans

K Hypothetical scenario explaining the origin of the two color groups of Jupiter Trojans /

@pothesis testing: Laboratory simulation

3-1ce mixture: 2:2:1 CH,;OH-NH,;-H,O
4-1ce mixture: 3:3:3:1 H,S-NH,-CH;OH-H,O

IRRADIATION CONDITIONS FOR ICE MIXTURES

Two mixtures studied to understand the role of H,S in the reddening

By submitting ice mixtures, with and without H,S, to irradiation and heating we simulate the surface
weathering which 1s responsible for color bi-modality in our hypothesis. The experimental setup 1s a
high vacuum chamber fitted with a closed cycle He Cryostat, FTIR, RGA mass spectrometer and an
electron gun. Ice films are deposited at T = 50 K and irradiated for ~ 20 h with 10 KeV electrons. The
deposited fluence is ~ 2 10%! eV cm=. The sample is then heated to 120 K at 0.5 K/min and kept at this
temperature for one hour while irradiated. The sample is then heated to 300 K.

Electron gun

Diagnostic techniques:
- Chemical characterization: FTIR and Mass spectrometer

Electron Fluence | Corresponding solar e- | Corresponding solar e IR
irradiation time at 15 irradiation time at S AU Detector
AU
~2x10? eV/em? | ~200,000 Yrs ~ 1.8 Million Yrs
RGA I He Cryostat ‘

{ Optical characterization: Vis and NIR reflectance measurements

/ Results: \

Optical Characterization (Vis-NIR spectroscopy )
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The Vis-NIR spectra show a clear reddening (positive slope) induced by 1rradiation of 1ce with and
without H,S. The reddening slope 1s much more important when the initial mixture contains H,S.

Chemical Characterization (Mid-IR spectroscopy)
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Different chemistry in the 3-ice and 4-ice mixture. OCS and NH,SH produced only in 4-ice mixture.
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(1) We address fundamental questions of solar system origins

(2) We search target molecules that can serve as markers for future missions or observations.
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ﬁjonclusion: [rradiation of ice films with and without H,S leads to a reddening and darkening\
observed in NIR spectra. The reddening 1s much more pronounced in the case of mixture with H,S.
Space weathering of H,S containing surfaces could lead to darker and redder objects. The red color i1s
due to a complex chemistry leading to the formation of organic polymers. The generation of S
containing molecules like OCS, NH,SH,CS, and SO, and their stability under irradiation and heating
can be helpful for choosing target molecules for potential future missions to the Jupiter-Trojan asteroids

(3) We support the development of targeted instrumentation for answering key origins questions Qs well as telescope observations with high signal to noise. /
The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA), and at the Division of Geological and Planetary Sciences at the Poster No: P-10
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Measurements of self and foreign broadening coefficients using
Tunable Laser Diode Spectrometer for Mars-TLS specific lines
Esha Manne ( 3225) and Christopher R. Webster (3200)

INTRODUC TION TLS Scan Regions CR Webster, GI Flesch, Aug 2012

. . L ] hethiane rezion Scanregion2-CO,only W TT S has 2 channels and detects gases both in the
This laboratory investigation supports and refines the data analysis of measurements | RIS R RN SEN VI simnasiies @, el vedl i toelr pyelie

made by the Tunable Laser Spectrometer (TLS) in the Sample Analysis on Mars [ESEE) GHID 1 [§oc* © oy @ Methane trace gas detection (3.27um)

CH. “cH

(SAM) suite on the Mars Science Laboratory (MSL) Curiosity rover. S, W S S B ¢« Also measures $12C in methane evolved from

Laser Wave Number (cm_1)
rocks.
@QMS' Quadrupole/MassiSpectrometer: : 10 Ll o TN AT ISOtOplc oS (278 “m)
@6 @ ChrerEGerE | ge® N B0 IS0 ‘ g 16 ol .
15 = crramaosrapit S TR T e | R _ I V\ ) l * Water evolved from rocks: 6D, 3'%0,

— ' ' Scan region 1 — CO,, H,0 Scan region 2 —H,0 Only
TSI TunablellLaser!Spectrometer

’IZ‘)CO7

’ T v T v T T
3590.2 35300 _ 3569.8 3594 4 3594.2 3594.0 3593.8 3593.6 3593.4 3593.2
Laser Wave Number (cm™ ) Laser Wave Number (cm )

81-pass Herriott cell Forfopticscambr MOTIVATION: TLS-SAM i1nstrument has been collecting data on gas abundances
of path 16.8 m . .
ﬂ y S and 1sotope ratios [1-3], both from the Mars atmosphere and gases evolved from the

K pyrolysis of rock samples. These two applications of Mars atmosphere and pyrolysis
B

- HHHH

| in a helium flow present the need to quantify self- and foreign-broadening
ey B Y PE—— [® @ coefficients at higher accuracies than @hose provided by.the HITRAN 2012 [4]

elist. Moreover, HITRAN’s foreign-broadening listing 1s only for air.

METHODS e 'RESULTS

The spectrometer is a similar setup to the. f' = [ exp(—ad) Dlre;’;::;zfm | Wavelength

existing TLS instrument on Mars, based on 4 | g calibration

1 | 100 Hz (@)
Tunable diode laser absorption technique. 1 _Fast current uning 1-2 cm | M
Direct absorptien technique is used for these i — a, N | Detector I
SOUrce <
. : . . . < < o m||‘ mnlf -
studies. One laser source 1s a near-IR tunable s 4 sl " |

diode laser at 2.78 um that can scan two a:Absorpt%on coefﬁc1en?=c5><N
o:Absorption cross-section cm?

spectral regions containing CO, and H,O ENENIERE R
isotopic lines. The second laser source is-a
diode laser at 3.27 pm for methane detection.

Voigt profile | Line profile
1 fitting

[V (a)) = \/;Aa) RG[W()C, y)]

Tunable lasers 2.78,3.27 um

0

. 400 —z?

e

w(x, y) = : f —dT
g J x—T+1iy

Detector

@ Complex probability function .

a) - a)o - A r _ M - - Experimental data
1 L 1 L 1 L
X = sV = . 3593.92 3593.96 3594.00 3594.04

A C()D A C()D " Wavelength cm’™”

o:Angular frequency, l
Doppler width <
Lorentzian width <

)/Nz (cm'llatm) ‘ yHe/}/Nz I

CH, lines This work |HITRAN-12 |This work |This work

E 10.06288 + 0.0005 [0.0645 (20%) |.6209 1.192 : r e )/ .
F 10.0609 +.00071  [0.0598 (20%) |.6448 1.295 G / seiy (cm”"/atm) | Y v, (cm™/atm) | He (cm /atm)|

G 10.06225 +.00043 |0.0609(10-20%) |.707 (CO,) This work ‘HITRAN-IZ ‘This work ‘HITRAN-IZ This work

: Gaussian, Lorentzian, énc_l Voigt
: Speed dependent Voigt, Rautian, and Galatry etc

1 - A(CO, |.094+.0013 |.09(1-2%) [.0655+.001 [.0689 (1-2%) |.0217 +.00055
Yy, (cm™/atm) ‘ Ve ! Y, | Yco, I Vv, C (OCH0 |.0955+.001 |.092 (1-2%) |.066+.0012 |.0692 (1-2%) |.0193 +.00043

13 : - P , L
CH, lines| . .1 |HITRAN_12 |This work |This work D (3C0O,) |.073+.0008 |.076 (1-2%) |.0658+.0009 |.0675(1-2%) |.0259 +.00046

A 10.0583+ 0.0005  |0.0588 (>20%) |.763 141
B 10.0633 +.00071  |0.065 (220%) |.711 11.291
C |o.05561 +.00043 ‘o 056 (=20%) ‘ 629 ‘1.384
D ) |

[0.062550.00072 |0.0611 (=20%) |.702 11.38

Line Y seir (em'/atm) ‘ VN, (cm!/atm) Y e (cm!/

(Water) atm)

This work IHITRAN-12 |This work |HITRAN-12 |This work

B (H, ¥0) |0.433 +0.005[0.456 (2-5%) |.0903+0.00146 |.1034 (2-5%) |.0120 =.00022
C (H,0) 10.62+.0071 [0.611 (>20%) |.0826 +0.001 |.0843 (1-2%) [.0114 +.00013
E (HDO) [0.375+.0043(0.368 (5-10%)|.0756 = .00095 |.0741 (5-10%) |.0119 + .00015
. Measurement errors are within 5% for self- and pressure- broadening
Conclusions: We report experimental measurements  coefficients. Differences in experimentally-measured N, broadening coefficients
of selt- and pressure- broadening coeflicients for the from that listed in HITRAN-12, are <5%. For TLS, differences in reported
spectral lines targeted by TLS on Curiosity rover. A 1sotope ratios between HITRAN 12 and our results are only ~70 per mil for oD

tunable diode laser spectrometer operating near 2.78 . . ] .
um and 3.27 um hss been implgmentefl for these | Values close to 3500 per mil, ~2 per mil for 3'°0 in water, and ~4-5 per mil for

studies. The experimental parameters have been 6'°C and 5'°0 in CO,.
compared with values from the HITRAN-12 database.
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Future Work: (Left Figure) Comparison of line-shape fits to

Jet Propulsion Laboratory the H,'®O absorption feature at 7222.29 cm™! measured at a

California Institute of Technology .
Pasadena, California pressure of 2.70 Torr and a temperature of 273.16 K (De Vizia et

wWww.nasa.gov al. 2012).
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Introduction

Cueva de Villa Luz is a flooded cave in southern
Mexico containing H,S-rich waters that mix with
oxygenated waters. The cave hosts extremophile
organisms that survive by metabolizing

hydrogen sulfide (H,S) into sulfuric acid (H,SO,).

The gradients and environments in Cueva de Villa
Luz could be analogs for the chemical gradients
that may exist in Europa’s subsurface ocean.

Objective

Previous work sampled only 7 points and
identified only two types of environments.

As part of a combined scientific expedition to
study Cueva de Villa Luz, our goal was to fully
map and identify the chemical environments
in the cave.

The chemical environment maps will serve as
a basemap for current and future geology and
extremophile studies in Cueva de Villa Luz.

Methods

We systematically sampled cave waters using
an EXO-1 chemical probe to measure:
 Temperature

o pH

- Oxidation-Reduction Potential (ORP)

- Dissolved Oxygen (ODO)

- Total Dissolved Solids (TDS)

* Turbidity

Cueva de Villa Luz sample locations
(over 70 inside cave; 2 outside)

Cave terrain units
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|| undetailed_fioor

|| Rimstone_zones

7 \, : ‘
¥ 93 2§ : \ Water_zones_smoothed_SmoothP

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
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What is relevance of Cueva de Villa Luz to Europa’s subsurface ocean?

Both have H,S — O, gradient systems — environments with potential chemical gradients for metabolism

Europa H,S - O, gradient

Ice photolysis and subduction injects O, into ocean
Hydrothermal vents inject H,S into ocean base

B -
¥y
% EN
v

Oxygen-rich
waters

H,S-rich
waters

H,S-rich
waters

Results

Classification of environments using
measured ORP and Turbidity
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Conclusions

Chemical map of Cueva de Villa Luz
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Method: Calorimetry

Phase dia

rams of the systems studied so far
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Conductive crust: Zones rich in AH also melt with the arrival of
the plume to the bottom, resulting in moltens more NH;
concentrated than the ocean, i.e. ~ 15 wt%

THF-clathrate: analogue CH,-clathrate at lower pressures
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274 K: H dissociation == pressure 1 from 0.5 MPa to 2 Mpa
285 K: Formation of a new H due to pressure 1

Implications
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Craters and Implications for Seismic Detection of Impacts
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Figure 1 (below): 496 new dated impact sites on a map of the TES Dust Cover Index (DCI)

[9], @ measure of the dustiness at the surface.
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Figure 3 (above): Left: Possible concentric/’nested” crater located in EQ9 landing ellipse.
Right: Example cluster with schematic showing how varying crater morphology with size
indicates subsurface layering with differing material strength. Cluster in HIRISE image
PSP _ 010292 1785 (1.28°S, 250.1°E; scale bars are 5 meters.
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Current cratering rate: 1.8x10° D_=3.9 m/km?/yr (cumulative)

For D<50 m, observations are lower 1.6-03

than models; when extrapolated to |

larger sizes, they are higher than | s ° :
models T T

- Model ages higher by a factor of ~4  1c0s

{ J¢

if using small diameters, or lower if
extrapolated to larger sizes [e.g., 10]
Commonly-used martian isochrons
should be used with great caution

F(D)=Differential craters / km#3 / year

Figure 2 (above): Left: Locations of new dated impacts (black squares) near proposed InSight
landing ellipses (white; shown before downselection). Basemap is TES DCI [9] (same scale as
Fig. 1) over THEMIS Day IR [15]. Lower dust cover to the west is likely contributing to fewer
craters being found. Right: Two examples of new impacts near proposed InSight landing sites.
HIiRISE images credit: NASA/JPL/University of Arizona

(Sub)surface properties and their importance to InSight

* New, small craters near InSight landing site (Fig. 2, left) expose properties of

the surface and shallow subsurface

 Amount of surface dust and underlying albedo indicated by darkened “blast

zones” around impacts (Fig. 2, right)
* Ejecta distributions and crater morphologies determined by target material
strength, cohesion, and layering within depth of excavation (Fig. 3).

« Relevance to HP?3 instrument:

 Mole hammering expected to similar depths, up to 5 m — soil penetrability

« Surface albedo and dust covering — inputs to thermal models
* Relevance to SEIS instrument:
* Propagation of seismic signals through a scattering regolith layer
* Impact-induced seismic signals — frequency and detectability
* Regolith cohesion, material strength, surface dust cover, etc. also affects:
* Instrument site selection and deployment
« Surface ops, e.g. thermal radiometer surface brightness temperature
measurements

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
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Figure 5 (above): Predicted number of SEIS impact detections of craters of different sizes.

Minimum detectable crater size increases with increasing distance

Detection limits + PFs [1, 2, 8, 14] (Fig. 4) - predicted number of impacts
detected of a given size (Fig. 5): ~4-8 total impacts will be detected per Earth
year (~8-16 in primary InSight mission)

~Half new impacts are clusters — may reduce detectability

InSight will test these predictions and provide an independent measure

of the current cratering rate at Mars

Pasadena, California
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Objectives

« The safety of the International Space Station (ISS) crewmembers and maintenance of hardware are the
primary rationale for monitoring microorganisms in this closed habitat.

« National Research Council (NRC) recommended to utilize ISS — a closed habitat — and observe changes
encountered due to the microgravity. Subsequently, NASA Space Biology program funded JPL to
catalogue microbial diversity of ISS surfaces and atmosphere under NASA — Microbial Observatory
Program.

* Molecular techniques were used to measure microbial burden and diversity associated with these
samples that were previously.

« This study provides the insight into microbial diversity of ISS using the state-of-the-art
molecular techniques applied by JPL-352N group for the MARS exploration program.

Sample Collection

Sample Processing
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Fig. 1. Microbial population from ISS location no. 4 (dining table) on PDA plate (fungi promoting media) (A). The contact slide used for sampling the ISS location no. 4
(dining table) (B). Contact slides cover a surfaces of 25 cm? while a polyester wipes 1 m2. Phylogenetic tree for the isolates collected from Blood Agar plates (potential
pathogens); IF, IIF- first and second sampling on the ISS, respectively.
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Fig. 2 Microbial population of various surface locations of ISS as measured by traditional and molecular methods.

Molecular Microbial Community Diversity Analysis

Illumina next generation sequencing for 16S rRNA (bacteria and archaea)
and 18S rRNA (fungi) — microbial diversity of the ISS environmental surfaces

Metagenomics study for functional analysis:
metabolism, defense/survival mechanisms,

antibiotic resistance, pathogenicity Whol .
ole genome sequencing —

novel species discovery

Data storage/accessibility:

1. ISS-MO - project database
2. GenelLab - NASA database for all genetic data
3. NCBI — worldwide database for biological data

Conclusions

Two sampling campaigns revealed presence of diverse microbial population with some
microbial species dominating in the ISS. The ongoing 16S rDNA Illumina sequencing will
provide data on microbial diversity over time (subsequent months of sampling).

The long-term goal of this project is aimed to develop practices for better cleaning and
maintenance of the ISS, cataloguing and preserving beneficial microorganisms for future

applications, and the general knowledge on microbial ecology of closed, environmentally
controlled built systems.

The microbial diversity study on the ISS will help to implement better practices for future
robotic and human missions.
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